If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-7a=18
We move all terms to the left:
a^2-7a-(18)=0
a = 1; b = -7; c = -18;
Δ = b2-4ac
Δ = -72-4·1·(-18)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-11}{2*1}=\frac{-4}{2} =-2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+11}{2*1}=\frac{18}{2} =9 $
| 5x3/4=7 | | 1/2y+12=7 | | -16m=-19m-9 | | -4=q-23 | | 7(z+3)-2(z-3)=2(z-2)+2(z-2) | | 3-5(c-2)=18 | | 1/x+5/x-2=4 | | (4x+7)+(2x+5)=180 | | -7b+4=-10-9b | | 4w+10=6w-1323/2 | | 7-p=-98 | | 16x3−–13x3−4x3+2x3−–15=–12 | | 3x2+12x+4=0 | | -7.6(x-2.75)=15.2 | | -2(3a+3)=4(2a-5) | | (10x+1)+(12x-5)=90 | | 85.6=f-7.63 | | (2x-3)+9=16 | | (10x+1)+(12x-5)=180 | | -2/5k=8 | | 4.2=1.6-0.6y | | 22/3=-3n-5/2n | | 6x-2=11.8 | | 8-14x=15^2 | | 4(2a-5)=2(3a-4) | | x=44x= | | 0=-60+64t-16t^2 | | (2x+4)+(2x+4)=12 | | Y=5/9x+5/9 | | (3x)+(x+16)=20 | | 16b−–13b−4b+2b−–15=–12 | | 7x-2=2(5x-5) |